
Journal of Statistical Physics, Vol. 26, No. 3, 1981 

On the Absence of Spontaneous Breakdown of 
Continuous Symmetry for Equilibrium 
States in Two Dimensions 
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Using the Bogoliubov inequality, we extend previously known results concerning 
the absence of continuous symmetry breakdown for equilibrium states of certain 
quantum and classical lattice, and continuum systems in two space dimensions. 
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1, INTRODUCTION 

A well-known theorem of Mermin and Wagner (1) based on the Bogoliubov 
inequality shows that the translation-invariant equilibrium states of 
the two-dimensional quantum Heisenberg model with Hamiltonian 
H = - ~ J ( i - j ) o i . o  j does not possess spontaneous magnetization if 
~[i[2. [j(i)[ < o~. The same method was applied by Mermin (2) to obtain 
the same result for classical spins. Garrison, Morrison, and Wong (3) used 
the Bogoliubov inequality to show the absence of spontaneous breakdown 
of symmetry (rather than only the absence of spontaneous magnetization) 
for translation-invariant (or mildly inhomogenous) equilibrium states for 
these and continuum classical and quantum models. For classical lattice 
systems with finite-range interactions, Dobrushin and Shlosman (4) showed 
that every equilibrium state is invariant under the continuous symmetry. 
We extend the results of Ref. 3 by dropping assumptions concerning 
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translation invariance of the state, and we extend the results of Ref. 4 by 
dropping the assumption of finite range and including quantum systems. 
Our results apply also to local quantum fields in two space dimensions at 
nonzero temperature. Similar methods apply to one-dimensional systems 
where, however, for lattice systems one has under similar hypotheses the 
stronger result of uniqueness of the equilibrium state. (See for example 
Refs. 5 and 6.) 

On the other hand, it is known that for certain classical and quantum 
spin systems with couplings falling off sufficiently slowly, there does exist 
spontaneous symmetry breakdown. (7'8) Furthermore, phase transitions for 
systems with continuous symmetry and finite-range interactions can occur 
without a spontaneous symmetry breakdown. O) 

Our method is based on the Bogoliubov inequality, which applies to 
equilibrium states of classical and quantum lattice and continuum systems. 
(See for example Ref. 10.) For our purposes we will take equilibrium state 
to mean a state satisfying the Bogoliubov inequality, and we will show that 
for such states in either two or one space dimensions with sufficient falloff 
of the interaction there is no spontaneous breakdown of a continuous 
symmetry. We wish to emphasize the particular method of estimation and 
so we will not dwell on technical matters not related to the estimate. 

2. GENERAL FORMULATION 

The system under consideration will be defined on the continuum ~2 
or the lattice 7/2. To each bounded region A is associated a set of obser- 
vables 916. The set of local observables is 91 = t_J A91A. There is a continuous 
one-parameter group o 5 of (global) symmetry transformations of 91 such 
that for each finite A, o591 A = 91A- The state co is invariant under the 
symmetry group if for all local observables co(osA ) = co(A). By the group 
property this is equivalent to 

d__ds ~_o cor ~ , , = 0  

Given any bounded region A o and any E > 0 we will construct a 
one-parameter group 6 5 of transformations of 91 such that 

(i) ~ = ~sl~A o 
(ii) 651a~ = identity, if A is contained in the complement of A 1, where 

A 1 is some bounded set containing Ao 

d . _ I ( A + A + A A + )  f ~ 1 7 6  (iii) s=0co(6sA) < eco 
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Since e may be chosen arbitrarily small it follows from (i) and (iii) that 
d/dsls=@(osA ) = 0 for all A ~ 92A0. Since this holds for all A 0 it follows 
that co is invariant under the symmetry group. 

The estimate (iii) will follow from Bogoliubov's inequality, which one 
may write in the form <l~ 

-~s < flco( K )co A + AA 
2 

where 

d ~~ 
K = ~ s  s ,=0 d t=o ~176 

The operator K is well defined by (ii) and appropriate properties of the 
Hamiltonian H. 

2.1, 

site j ,  so that 
Then 

where 

Lattice Case 

For each j E 7/2 let os(j) be the action of the symmetry group at the 
o~ = | Given c:7/2-->R, let 6 s = | 

co(K) = ~,, ~] c ( i ) c ( j ) J ( i , j )  
i~2~ 2 jE~_ 2 

d d 
J(i ,  j )  = dss s=0 ~tt t=o cO(~176 ) 

Clearly J(i, j) is a measure of the interaction between the spin at site i and 
the spin at sitej. If e(j) = 1 for j  ~ A 0 then 6siva = osl~ and if e(j) = 0 for 
j in the complement of A l, then 6~ ~A = identity~176 A C~ We will choose 
c so as to make co(K) small. The properties of J(i, j) which we require are 
the following. 

Properties of J(i, j):  

(i) J(i, j) = J( j ,  i) 
(ii) ~ j J ( i , j )  = 0 

(iii) There exists a function f :  Z2---> • such that IJ(i,j)l <<. f ( i - j )  and 
~jlj]2f(j) < ~ .  

Property (i) follows from the commutativity of o~(i) and o~(j). Property 
(ii) follows from the invariance of the Hamiltonian under the symmetries o~ 
since 

d 
~i J(  i, j)  = ~ ,=o~tt ,=Oco( ~176 ) 
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and osH = H. Property (iii) is an assumption about the structure of the 
Hamiltonian. As an example, consider a quantum spin system. Let Jj be the 
self-adjoint operator which generates as(j), so that for A E 9A(j), ~s(j)A 
= e i~Ae- i~ .  To each finite X c 77 2 is associated the [X[-body interaction 
h(X)  E ~x,  such that for each i E 7/2, ~x~il lh(X)[I  < ~ .  The invariance 
of the Hamiltonian under the symmetry transformation is expressed by 
osh(X ) = h(X)  for all X. Then 

~ . J ( i , j ) :  ~ o~([Jj, d s=0o~h(X)] ) = 0  
i X ~ j  \1. 

and 

IJ(i,j)l <411Ji[lllJjll ~ IIh(X)ll=411Joll 2 ~ IIh(g)ll 
X ~ i , j  X ~ i , j  

Note that this estimate for J(i, j)  depends only on the interaction and not 
on the state o~. [If we deal with unbounded operators h(X)  then such an 
estimate on J(i, j)  can still be obtained using suitable hypotheses on the 
state ~0.] If we suppose the Hamiltonian (but not the state) is translation 
invariant then 

[[h(S)l[ = ~ [[h(g)[[ 
X ~ i , j  X ~ O , j - i  

and 

I J r  ~ Ilh(X)[[< ~ ]X[IDXlPllh(X)]I 
j X ~ O , j  X~O 

where IX[ is the number of lattice sites in X and D X  is the diameter 
of X = s u p i . e x ] i - j [  These estimates yield (iii) if we suppose 

d 

E~olXl IDXI21Ih(X)II < oo. 
A similar discussion applies to the classical case, where now we need 

an estimate for the second mixed derivative of h(X).  In Section 3 we will 
prove the following theorem. 

Theorem A. Let J( i , j )  satisfy the properties (i), (ii), (iii) above. 
Given A 0 and r > 0 there exists c : 2~ 2 -~ • such that 

(a) 0 < c ( j )  < 1 Vj  E 7/2 
(b) c (j) = 1 for j e A o 
(c) c(j) = 0 fo r j  E A~ for some bounded A 1 D A o 
(d) [~ir < E 

2.2. Continuum Case 

In the quantum case there will be a self-adjoint current J(x) such that 
if A E 9.1 A, d/dsl,=oosA = i[J(c),A], where J(c) = f d2xc(x)J(x) and c(x) 
= 1 for dist(x, A) < 6. The one-parameter group 6 s of the previous discus- 
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sion is given by 6,B = eiSJ(C)Be -isJ(c). Clearly 8,B = B if B E ?IA(c), since 
e isJ(C) E 9AA(~), where A(c) = {x : dist(x, supp c) < 8 } and [91A,, 9AA2 ] = 0 if 
A 1 A A 2 = O. We may write 

= - 

where 

J(x ,y)  = - i ~ ( [ J ( x ) , J  (y)]) 

= - if d2x d% c(x)c (y)J(x, y) 

d lt=oeitHj - and J ( y ) = - ~  (y)e ,m 

In the case of local relativistic quantum fields at nonzero temperature 
there will be a conserved current (J~ which generates the 
continuous symmetry. Define J(x) = f dt d 2y 7/(t)h (x - y)J 0(t, y), where ~/is 
a smooth function with support in (Itl < 8/2}, fdt~l(t) = 1, and h(x) is a 
smooth function with support in ([x I < 8 /2) ,  f dZxh(x) = 1. Then J(x, y) is 
a smooth function which vanishes if Ix - y[ > 28 by locality (the speed of 
light = 1). In the case of nonrelativistic quantum fields the properties of 
J(x, y) depend on the potential coupling different points. The classical case 
may be formulated in a similar way with Poisson brackets replacing 
commutators. 

The properties of J(x, y) which we shall require are 

(i) J(x, y) is measurable 
(ii) J(x, y) = J(y, x) 

(iii) f d2yJ(x, y) = 0 
(iv) There exists a function f :  g 2 ~  R such that IJ(x, y)l -<< f (x  - y) and 

f d 2 x ( 1  + Ixl2)/(x) < 
In Section 3 we will prove the following theorem. 

Theorem B. Let J(x, y) satisfy the properties (i), (ii), (iii), (iv) above. 
Given e > 0 there exists c : •2 ~ R such that 

(a) 0 < c ( x ) <  1 V x E R  2 
(b) c (x)=  1 for Ixl < L 
(c) c(x) = 0 for Ix[ >/ L' for some L' > L 
(d) c is smooth (infinitely differentiable) 
(e) [f d2xdZyc(x)c(y)J(x,y)[ < c 

3. THE ESTIMATE 

3.1. Lattice Case 

Theorem A follows from Theorem B; that is, the construction of the 
required c in the lattice case follows from the construction in the contin- 
uum case. There is a natural embedding of Z 2 in R 2 so that j E Z 2 is the 
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center of a unique open unit square Aj E •2 and U Aj = R 2. Given J(i, j) 
with the required properties, we define a piecewise constant J(x, y) by 

t~ 
(i,j) i fx  EAi, y ~ A j  

J(x, y) = if either x o r y  is on the boundary 
of a unit square 

It is not difficult to see that J(x, y) has the required properties for Theorem 
B, and so we may construct c(x). Then define c(j)= f ajd2xc(x). Clearly 
c(j) has all the required properties. Indeed, c(j)= 1 for x ~ A 0 if L is 
chosen large enough. Also 

li~,jc(i)c(j)J(i, j) = f d2xd2yc(x)c(y)J(x,y) < e  

3.2. 

Thus 

and 

Translation-lnvariant Continuum Case  

We consider first the case J(x, y) = J (x  - y). Then 

J ( p )  = f  d 2 x e x p ( - i p  �9 x ) J ( x ) = f  d2x(cosp �9 x -  1)J(x) 

I•(P)l < Ipl2f dZx Ixl21J(x)[ =  lpl 2 

f dZxdZyc(x)c(Y)J( x - y) = ~ f dZPlE(P)12f(p) 

< a (2qr) 2 1  fdZplpl21E(p)]2= c~fW2xlVcl 2 

We must then construct c(x) so that 

(a) 0 < c(x) < 1 
(b) c (x )=  1 for [x[ < L 
(c) c(x) = 0 for Ix] /> L' 
(d) c is smooth 
(e) fd2xlVcl 2 < e 

We will construct c as a function of r = Ix I only. 
Let 

a(x) = if Ix[ > R 
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defining b(x)= where e > 0. Then fd2xlVa[ 2 = 7re. Furthermore, 
max(2a(x) - 1, 0) it is clear that 

1 for [xl < R 
b(x) = 0 for Ixl ~> R' for some R' > R 

and fd2x IlVbl[ 2 < 4fd2x IlVal[ 2 = 4~rE. 
Finally let c(x)= fd2yh(x- y)b(y), where 0 < h(x)< 1, fd2xh(x) 

= 1, h(x) = 0 if Ixt > 8, h(x) is infinitely differentiable and depends only on 
Ix[. Clearly c has properties (a)-(d) and 

1 _ 1 fd2pls f d 2 x l V c f  - (2~)2 fd2plPI21~(P)f (2~r)2 

1 fd2xlVb]2 < (2~)2 f a2P IPi21tT(p)12= 

3.3. General Continuum Case 

We must estimate fd2xfd2yc(x)c(y)J(x,y). Using J(x,y)=J(y,x) 
and fdZxJ(x, y) = 0 we have 

1 f d 2 x f  d Z y [ c ( x ) -  c(y)]2j(x,y) f d2x f d2yc(x)c(Y)J(x'y) = - -~ 

Therefore, since IJ(x,y)l < f ( x -  y), 

f d2x f d2y c(x)c(y)J(x,y) 

1 f d2x f d:y [c(x) - c(y)]:f(x - y) 

= f d2xc(x)2f d2y f ( y ) -  f d2x f d2yc(x)c(Y)f( x - y) 

- 1 fd2ple(p)12[f(o)-f(p)] 
(2~) ~ 

Now 

f ( o ) -  f ( p ) - - f  d 2 x ( 1 -  cosp. x)f(x)= 2 f  d2x sin2(�89 xff(x) 

Thus If(o) - f(p)[ < �89 Ipl2f d2x Ixl~f(x) = -/Ipl 2. We may thus write 

f d2x f d2yc(x)c(Y)J(x,y) < ~ f d2xlVc(x)[ 2 

We may now use the result of Section 3.2. 
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4, THE ONE-DIMENSIONAL CASE 

We briefly mention here the application of our method in the one- 
dimensional case. The method  of Section 3.3 applies, except that we now 
use the estimate 

f dx sin2(px)f(x) < I p l f  dx Ix l f (x )  

if fdx  Ixlf(x) < oo o r  

f dxsin2(px)f(x) <<-Iplf dysin2y f ( (1/p)y)  = IP[f dy sin2---------~Y p2 p2 + y2 

< Iplfdy sin2------~y i f f ( x ) -  1 
y2 1 + x 2 

We thus obtain [ fdxfdyc(x)c(y)J(x ,  y)[ < 7fdp [Pl [?(p)[2. 
As in Section 3.2, one may  find a suitable c(x) such that f dp IF[ I?(p)[ 2 

is as small as desired. Thus if fdx  [xlf(x)< oo or f ( x ) =  a / ( 1  + x 2) there 
is no spontaneous continuous symmet ry  breakdown.  
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